Efficient 3D Simulation of Wave Propagation with the Functional Transformation Method

نویسندگان

  • Stefan Petrausch
  • Rudolf Rabenstein
چکیده

The functional transformation method (FTM) is a elegant mathematical approach for the solution of partial differential equations (PDEs) and has been so far successfully applied in digital sound synthesis for the simulation of string and percussion (drums for instance) instruments. Based on suitable integral transformations, the problem is solved analytically in both, time and space frequency domain. Discretization and inverse transformation yields a discrete algorithm, implementable in any computer hardware. In this paper the FTM is used for the simulation of three-dimensional (3D) wave propagation. With the help of a multi-dimensional fast Fourier transform (FFT), the complete wave field can be evaluated and visualized very efficiently. A program is demonstrated which simulates a 90m room with an audio bandwidth of 5kHz at 5 images per second on current PC-hardware. The algorithm is compared with classical simulation techniques both in computational complexity and accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

Simulation of Wave Propagation over Coastal Structures Using WCSPH Method

In this paper a space-averaged Navier–Stokes approach was deployed to simulate the wave propagation over coastal structures. The developed model is based on the smoothed particle hydrodynamic (SPH) method which is a pure Lagrangian approach and can handle large deformations of the free surface with high accuracy. In this study, the large eddy simulation (LES) turbulent model was coupled with th...

متن کامل

Simulation of static sinusoidal wave in deep water environment with complex boundary conditions using proposed SPH method

The study of wave and its propagation on the water surface is among significant phenomena in designing quay, marine and water structures. Therefore, in order to design structures which are exposed to direct wave forces, it is necessary to study and simulate water surface height and the wave forces on the structures body in different boundary conditions. In this study, the propagation of static ...

متن کامل

Simulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm

This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006